
IBM Software Group

®

EGL – Path to Standardization

IBM Software Group | Rational software

2

Agenda

Purpose of an EGL standard

EGL as a PIM for Transformation

Discussion – next steps

IBM Software Group | Rational software

3

General approach of EGL

Provide a simple core language
Provide a way to tag language elements with meta data
Use these tags to represent complex semantics

Mapping Types to a Database
Binding of data to UI elements with validation and formatting

Allows programmer to simply state semantics without forcing platform or
middleware implementation choices

Same meta data can be applied in multiple contexts

Transformation engine understands how to use meta data in mapping to a
given runtime

Target language and platform leveraged to implement the defined semantics

Conceptually similar to UML tags and stereotypes when used in transforming
models into code

IBM Software Group | Rational software

4

EGL Transformation Process

EGL Source
(.egl)

IR Model
(.ir)

IR Compiler
Java CodeEGL2Java

EGL2CBLi

EGL2CBLcics

EGL2CBLims

EGL2CBLbat

EGL2CIL

COBOL Code

COBOL Code

COBOL Code

COBOL Code

Common
Intermediate

Language

Transform Process

RAD
Future?

IBM Software Group | Rational software

5

Purpose of an EGL Standard in ADM

Transformation is a key aspect of “modernizing” existing applications

Transformation from one PSM to another PSM is a many to many
proposition

Difficult to manage – not cost effective
Difficult to get group involvement in any particular transformation

Transformation to a language which is a PIM makes it a hub and
spoke problem: PSM PIM PSM

Focuses transformations to and from a standard model
The PIM needs to be a full programming language
EGL is a PIM

Many companies that do transformations invent their own languages
to solve this same problem

IBM Software Group | Rational software

6

PIM Requirements

Needs to be a full programming language
Includes semantics as well as syntax
Future maintenance on transformed elements is done on the PIM

Can easily represent common sources of legacy transformations
Semantic shift from legacy language to PIM should not be too great
Models common concepts in all PSMs – similar in spirit to lower level KDM concepts
• Types, Actions, Packages, etc

Can be annotated/profiled
Declarative metadata drives complex transformations and keeps the implementation
of a given abstraction out of the source code.

PIM can be extended/restricted
Not all model elements required to be implemented in transformations
PIM language itself used to define the model extensions
PIM defines standard points of extension

IBM Software Group | Rational software

7

EGL as a PIM

If EGL is to be a standard PIM then it must satisfy
the basic PIM requirements

It is a programming language
It has concepts and syntax to deal with common sources of
legacy transformation.

Data types and structures – typically where language interaction breaks
× No pointers or explicit memory management – a problem?

It has the concept of Stereotype and Annotation used to
decorate declarations with metadata.

× The transformation engine is not extensible today
× EGL itself does not define the meta model

IBM Software Group | Rational software

8

EGL as a PIM – Language Extensibility

Original intent
Standardize EGL as is – includes standard way to add new
stereotypes and annotations to affect transformations
However, this does not allow third parties that need OO concepts
to use EGL as a PIM

Current intent
Define EGL kernel as basis for “family” of languages
Core extension mechanism is Class and Stereotype
Meta Model defined reflectively by EGL itself using Classes and
Stereotypes
The kernel meta model is based on Class but language
extensions based on the kernel need not surface OO concepts
• EGL as defined today would be such an example

IBM Software Group | Rational software

9

Language Extensibility – Extension points

Completely general extensibility cannot work

Instead three points of extension are proposed
New Classifiers – new forms of user defined types

New Metadata types - Stereotypes and Annotations

New Actions – ACTION statement operands

Syntax is not extensible
All extensions must be handled by closed syntax

Stereotypes are used to apply semantic information so that many
compiler checks can be handled as semantic rather than syntactic
checks

IBM Software Group | Rational software

10

Language Extensibility – Type Meta Model

IBM Software Group | Rational software

11

EGL Source that defines meta model

package egl.kernel;

// EGL Type Meta Model
class Object

annotations Annotation[];
end

abstract class ModelElement
end

abstract class NamedElement extends ModelElement
name string;

end

enum AccessModifier
public = X"00000000";
private = X"00000001";
protected = X"00000002";

end

abstract class Classifier extends NamedElement
accessModifier AccessModifier;
stereotypedBy <<Stereotype>>;
fields Field[];

end

class ClassType extends Classifier type Metatype {
keyword = “class”;
typeKind = TypeKind.Reference;
memberKinds = [MemberKind.All];
hasSuperType= yes;
hasInterfaces = yes;
requiresMain = no;

}
classModifiers ClassModifier[];
superType ClassType;
interfaces InterfaceType[];
constructors ConstructorMbr[];
functions FunctionMbr[];
operations OperationMbr[];

end

IBM Software Group | Rational software

12

EGL Source for Meta Stereotypes

package egl.kernel;

// Meta Stereotype definitions
class Stereotype extends ModelElement type Stereotype {

targets = [ClassType.type];
}

targets Classifier[];
memberAnnotations <<Annotation>>[];
mutualExclusions <<Annotation>>[];
associations <<Annotation>>[];

end

class Annotation extends ModelElement type Stereotype {
targets = [ClassType.type];

}
targets ModelElement[];

end

class Metatype extends ModelElement type Stereotype {
targets = [Classifier.type];

}
keyword string;
typeKind TypeKind = TypeKind.Reference;
isStaticType boolean = no;
memberKinds MemberKind[] = [MemberKinds.All];
hasSuperType boolean = no;
hasInterfaces boolean = no;
requiresMain boolean = no;

end

class SystemType extends ModelElement type Stereotype {
targets = [RecordType.type, ClassType.type];

}
end

IBM Software Group | Rational software

13

Language Extensibility – Classifier extension

IBM Software Group | Rational software

14

Adding new Classifiers

Languages based on EGL kernel must be free to
choose relevant set of Classifiers

EGL Kernel defines set of specific Classifiers which
have very specific syntax

Semantics for all Classifiers are governed by the
Metatype stereotype.

All new Classifiers are syntactically similar to
ClassType but constrained by an instance of the
Metatype stereotype

IBM Software Group | Rational software

15

Classifier Extension Example – EGL Program type

package egl.core;

class ProgramType extends Classifier type Metatype {
keyword = "program",
memberKinds = [MemberKinds.FieldMbr, MemberKinds.FunctionMbr],
isStaticType = yes,
requiresMain = yes

}
fields FieldMbr[];
functions FunctionMbr[];

end

IBM Software Group | Rational software

16

Registering Classifiers

Languages based on kernel register to the
compiler the set of Classifiers available.

The ‘keyword’ values associated with the given
classifier metatype information tell the compiler
how to treat declarations of the given classifier

This works because the basic syntax of all
extended classifiers is the same except for the
initial keyword

Metatype info used to semantically check the declaration

IBM Software Group | Rational software

17

Language Extensibility – Meta data types

IBM Software Group | Rational software

18

Example Stereotype – EGL SQLRecord

package egl.core.io.sql;

class SQLRecord type Stereotype {
targets = [egl.kernel.RecordType.type],
memberAnnotations = [ColumnName.type, ..],

}

tableNames String[][];
end

class ColumnName type Annotation {
targets = [egl.kernel.FieldMbr]

}
value string;

end

// Example usage

record Employee type SQLRecord {
tableNames = [["T1", "Employee"]]

}
employeeNumber char(6) { @columnName{ "EMPNO" } };
lastName string;
firstName string { columnName = "FIRSTNME" };

. ..
end

IBM Software Group | Rational software

19

Language Extensibility - Action extension

IBM Software Group | Rational software

20

Extending the set of Actions - TBD

EGL Kernel defines a set of standard Actions
Add, Delete, Get, Replace, Open, Close, Converse

Actions have abstract semantic which is made
concrete through the use of stereotyped operands

get anEmployee;

Extension is based on adding new stereotypes and
adding transforms that understand the metadata

Should the set of Actions be extensible?
Syntax issues more difficult to deal with

IBM Software Group | Rational software

21

Discussion

Relationship to KDM, GASTM
Standard transformations from EGL model

How are Stereotypes and Annotations expressed?

What are the full requirements of a PIM in the
context of ADM Transformation?

	EGL – Path to Standardization
	Agenda
	General approach of EGL
	EGL Transformation Process
	Purpose of an EGL Standard in ADM
	PIM Requirements
	EGL as a PIM
	EGL as a PIM – Language Extensibility
	Language Extensibility – Extension points
	Language Extensibility – Type Meta Model
	EGL Source that defines meta model
	EGL Source for Meta Stereotypes
	Language Extensibility – Classifier extension
	Adding new Classifiers
	Classifier Extension Example – EGL Program type
	Registering Classifiers
	Language Extensibility – Meta data types
	Example Stereotype – EGL SQLRecord
	Language Extensibility - Action extension
	Extending the set of Actions - TBD
	Discussion

